OXYGEN AND TEMPERATURE ELECTRODE

General features

The oxygen content in liquids is measured with a system called Clark's cells. These cells generate an electrical current proportional to the oxygen partial pressure which can be evaluated with a suitable measurement converter.

In order to prevent interference effects on measuring, the Clark's cells are covered with a gas-permeable membrane. The membranes typically used are made from PTFE but, as this material is mechanically fragile, frequent changing is often necessary, along with the related "demanding" operations (interruption of measurement, electrolyte replacement, regeneration of the electrodes).

The **\$423** solves this problem by using an OPTIFLOW™ membrane. This membrane is very mechanically stable, is manufactured as a laminate around a steel mesh and is very resistant to chemically aggressive environments as well as high pressures.

Thanks to the special construction of the measuring electrodes, this system also makes the sensor totally "maintenance free".

Applications

Surface waters, drinking water, biological treatment of waste water.

Technical specifications

Measuring range

Measuring method

Sensitivity

Stabilization time

Required flow rate

Temperature sensor

Operating temperature

Maximum pressure

Body material

Electrode material

Membrane material

Reference electrolyte

Electrical connector

Connection to process

Polarisation current

0,4...40,0 mg/l

measure of the electric current influenced by the oxygen partial pressure

40...80 nA a 25 °C in air

typical 15 min., max. 1 h

 $\geq 0.03 \text{ m/s}$

NTC 30 kOhm Oxysens W (NTC 22 kOhm Oxysens – optional)

0...60 °C

4 bar

SS1.4435, PEEK, Silicon, NBR

Silver-Platinum combination

OPTIFLOW

Alkaline solution

Integral cable 5 mt

Pg 13.5 threaded

-670 +/- 50 mV

Accessories

OPTICAL OXYGEN AND TEMPERATURE PROBE

General features

196.3 mm шш 8.69 **S423 C OPT** is an oxygen measuring sensor with integrated temperature probe. The measuring technique is based on the following optical principle: a diode emits a blue light towards a support on which a fluorescent substrate is applied. The substrate reacts by emitting initially a red light (luminescence),

then returns to its initial state. The intensity of the produced red light and the return rate to the initial state are related to the present oxygen concentration. This innovative method allows reliable, accurate measurements with no drift over time, so that the system calibration is no longer necessary. No maintenance is required except for the replacement of the luminescent support about every two years. The system does not consume oxygen, therefore it is suitable for the most varied fields of application, including those in which the measuring liquid is almost stationary.

Applications

Surface waters, fish farms, drinking water, waste water, sea water

Available versions with PVC body, with 4...20mA outputs

Technical specifications

Measuring range

Measuring method

Accuracy

Response

Refresh time

Temp. compensation

Operating temperature

Maximum pressure

Body material

Electrode material

O-Rings

Mechanical protection

Power supply

Power consumption

Cable

Signal interface

0.00...20.00 mg/l

Optical measure by luminescence

 \pm 0,2 mg/l when < 5mg/L \pm 0,3 mg/l when > 5mg/L

90% of the value in less than 60 second

 $T_{90} < 60s$

with internal NTC probe

0...50 °C

5 bar

SS316 (PVC body optional)

Special optical glasses

NBR and Silicon

IP68 Sensor + cable

12...24Vdc

max. 2W

10m integral with the sensor (other on request)

RS 485 Modbus RTU Protocol